决策树, Splitting Datasets one feature at a time
What’s a decision tree?
决策树分类器就像带有终止块的流程图,终止块表示分类结果。开始处理数据集时,我们首先需要测量数据集合中数据的不一致性,也就是熵(Entropy),然后寻找最优的特征划分数据集,直到数据集中的所有数据属于同一个分类。
熵与信息增益(Entropy and Information Gain)
定义
假设两个信息源发出的字符量是一样的(使用同样的集),那么怎样衡量两个信息源发出的信息量那?我们可以先衡量信息源发出单个字符的信息量。
通常,一个信源发送出什么符号是不确定的。衡量单个字符的信息量,可以根据其出现的概率来度量。概率大,出现机会多,传达信息的不确定性小;反之不确定性就大。不确定性函数 \(f\) 是概率 P 的单调递降函数,即概率越大,不确定性越小;反之亦然。
假设两个符号出现的概率是 \(p_1, p_2\), 不确定函数为 \(f\) ,则两个独立符号所产生的不确定性应等于各自不确定性之和,即 \(f(p_1,p_2)=f(p_1)+f(p_1)\) 这称为可加性。同时满足这两个条件的函数 \(f\) 是对数函数,即
\[f(p_i) = \log\frac1p_i = -\log{p_i}\]式中对数一般取2为底,单位为比特。
所以我们把符号 \(x_i\) 的信息定义为:
\[l(x_i) = -\log_2{p(x_i)}\]其中 \(p(x_i)\) 是符号 \(x_i\) 出现的概率。
这时,信源的平均不确定性应当为单个符号不确定性\(-log_2{P_i}\)的统计平均值(E),可称为信息熵 (香农熵, Shannon entropy),即
\[H = - \sum_{i=1}^n p(x_i)\log_2{p(x_i)}\]而两个信息源产生的信息量的差值,称为信息增益。
信息增益
信息增益是熵的减少或者是数据无序度的减少。
构造决策树
以提供的简单海洋生物数据来构造下决策树,数据集有两个特征:
- no surfacing;
- flippers;
Order | No Surfacing | flippers | fish |
---|---|---|---|
1 | 1 | 1 | y |
2 | 1 | 1 | y |
3 | 1 | 0 | n |
4 | 0 | 1 | n |
5 | 0 | 1 | n |
1. 计算香农熵(熵越高,则混合的数据也就越多)
\[\begin{aligned} H & = -p(x_y) * \log_2{p(x_y)} -p(x_n) * \log_2{p(x_n)} \\ & = -(\frac{2}{5} * log_2{\frac{2}{5}}) - -(\frac{3}{5} * log_2{\frac{3}{5}}) \\ &\approx 0.5288 + 0.4422 \\ &= 0.971 \end{aligned}\]2. 按照获取最大信息增益的方法划分数据集(第一轮)
分别根据不同的特征来确定数据集的划分,用最大信息增益的特征来划分。
- 以
no-surfacing
特征来尝试分类:feature = 'no surfacing', value = 1 : [1, y], [1, y], [0, n] value = 0 : [1, no], [1, no]
则新的熵为 \(h_1\) 与信息增益 \(g_1\):
- 以 flippers 第二个特征来尝试分类:
feature = 'flippers', value = 1: [1, y], [1,y], [0, n], [0, n] value = 0: [1, no]
则新的熵为 \(h_2\) 与信息增益 \(g_2\):
根据最大的信息增益来划分数据集,即根据第一个特征来划分:
2. 递归按照获取最大信息增益的方法划分数据集(第二轮)¶
即对还需要划分的子树进行划分,待划分的子树就只有右子树了。 其基本熵为:
\[\begin{aligned} H = - \frac{2}{3} * log_2{\frac{2}{3}} - \frac{1}{3} * log_2{\frac{1}{3}} \approx 0.6365 \end{aligned}\]该子树就只有一个特征值 flippers 了, 根据 flippers 来进行划分。
features = flippers, value = 1: [1, y], [1, y]
value = 0: [0, n]
新的划分熵 \(h_1\) 及信息增益 \(g_1\):
\[\begin{aligned} h_1 &= \frac{2}{3} * (-log_2{1}) + \frac{1}{3} * (-log_2{1}) = 0 \\ g_1 & = 0.6365 - 0 = 0.6365 \end{aligned}\]无更多信息增益,可以直接划分。
递归结束的条件
决策树递归结束的条件是:程序遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有相同的类。
最终生成的决策树
其它
如果数据集已经处理了所有属性,但是类标签依然不是惟一,即叶子节点还是可以再分的,此时我们需要决定如何定义该叶子节点,在这种情况下通常会采用多数表决的方法决定该叶子节点的分类。
后继还会介绍其它决策树算法,如 C4.5 和 CART,这些算法并不总是在每次划分分组时都会消耗特征。
算法实现
'''
决策树算法实现
'''
from numpy import *
from math import log
import operator
# 计算香农熵
def calcShannonEntropy(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for vec in dataSet:
label = vec[-1]
labelCounts[label] = labelCounts.get(label, 0) + 1
shannonEntropy = 0.0
for label in labelCounts:
probability = float(labelCounts[label]) / numEntries
shannonEntropy -= probability * log(probability, 2)
return shannonEntropy
# 根据特征划分数据集
def splitDataSet(dataSet, fAxis, value):
retDat = []
for vec in dataSet:
if vec[fAxis] == value:
tmp = vec.copy() # 等价于 tmp = vec[:fAxis].extend(vec[fAxis+1:])
del tmp[fAxis]
retDat.append(tmp)
return retDat
# 选择最优的数据集划分特征
def chooseBestFeature(dataSet):
numDs = float(len(dataSet))
numFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEntropy(dataSet)
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures):
values = [example[i] for example in dataSet]
valuesSet = set(values)
newEntropy = 0.0
for v in valuesSet:
subDataV = splitDataSet(dataSet, i, v)
prop = float(len(subDataV)) / numDs
newEntropy += prop * calcShannonEntropy(subDataV)
infoGain = baseEntropy - newEntropy
print ('feature ', i, 'infoGain: ', infoGain)
if infoGain >= bestInfoGain:
bestFeature = i
bestInfoGain = infoGain
return bestFeature
# 对于未能完全划分的叶子节点根据投票来获取分类
def cleafMajorityCount(leafList):
labelCount = {}
for vote in leafList:
labelCount[vote] = labelCount.get(vote, 0) + 1
sortedCount = sorted(labelCount.items(), key = operator.itemgetter(1), reverse = True)
return sortedCount[0][0]
# 递归创建决策树
def createDecisionTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
# 如果类别完全相同则停止继续划分
if classList.count(classList[0]) == len(classList):
return classList[0]
# 如果没有特征可用时,用投票算法来完成分类。
if len(dataSet[0]) == 1:
return cleafMajorityCount(classList)
bestFeature = chooseBestFeature(dataSet)
bestFeatureLabel = labels[bestFeature]
myTree = {bestFeatureLabel: {}}
del labels[bestFeature]
values = [example[bestFeature] for example in dataSet]
valuesSet = set(values)
for value in valuesSet:
subLabels = labels[:]
myTree[bestFeatureLabel][value] = createDecisionTree(splitDataSet(dataSet, bestFeature, value), subLabels)
return myTree
# 创建数据集
def createDataSet():
dataSet = [
[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']
]
labels = ['no surfacing', 'flippers']
return dataSet, labels
import copy
# 熵函数测试
myDat, labels = createDataSet()
print (myDat)
print ('Initial Shannon Entropy: ', calcShannonEntropy(myDat), '\n')
'''
熵越高,则混合的数据也就越多,我们可以在数据集增加新的分类,观察熵的变化,这里增加一个新的 'maybe' 分类。
'''
testDat = copy.deepcopy(myDat)
testDat[0][-1] = 'maybe'
print (testDat)
print ('Add another label', calcShannonEntropy(testDat))
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
Initial Shannon Entropy: 0.9709505944546686
[[1, 1, 'maybe'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
Add another label 1.3709505944546687
# 测试根据特征划分数据集函数
print ('Split by feature 0(no surfacing)')
print(splitDataSet(myDat, 0, 0), '\t', splitDataSet(myDat, 0, 1))
print ('Split by feature 1(flippers)')
print(splitDataSet(myDat, 1, 0), '\t', splitDataSet(myDat, 1, 1))
Split by feature 0(no surfacing)
[[1, 'no'], [1, 'no']] [[1, 'yes'], [1, 'yes'], [0, 'no']]
Split by feature 1(flippers)
[[1, 'no']] [[1, 'yes'], [1, 'yes'], [0, 'no'], [0, 'no']]
# 测试选择最优的划分特征
print (myDat)
print ('Initial Choose:', chooseBestFeature(myDat), '\n')
print (splitDataSet(myDat, 0, 0))
print ('Another Choose:',chooseBestFeature(splitDataSet(myDat, 0, 0)))
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
feature 0 infoGain: 0.4199730940219749
feature 1 infoGain: 0.17095059445466854
Initial Choose: 0
[[1, 'no'], [1, 'no']]
feature 0 infoGain: 0.0
Another Choose: 0
# test cleafMajorityCount
cleafMajorityCount(['y','y','n'])
'y'
# 获取最终的决策树
myDat, labels = [[1, 'yes'], [1, 'yes'], [0, 'no']], ['flippers']
print (myDat, labels)
print (createDecisionTree(myDat, labels))
print ()
myDat, labels = [[1, 'yes'], [1, 'yes']], ['flippers']
print (myDat, labels)
print (createDecisionTree(myDat, labels))
print ()
myDat, labels = createDataSet()
createDecisionTree(myDat, labels)
[[1, 'yes'], [1, 'yes'], [0, 'no']] ['flippers']
feature 0 infoGain: 0.9182958340544896
{'flippers': {0: 'no', 1: 'yes'}}
[[1, 'yes'], [1, 'yes']] ['flippers']
yes
feature 0 infoGain: 0.4199730940219749
feature 1 infoGain: 0.17095059445466854
feature 0 infoGain: 0.9182958340544896
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
使用 Matplotlib 绘制决策树
// 获取树的深度 js 版实现
var tree = {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
var getTreeDepth = function(tree){
if (tree && typeof tree == 'object' && Object.keys(tree).length > 0) {
var keys = Object.keys(tree)
var subTree = tree[keys[0]]
var subKeys = Object.keys(subTree)
var leftDepth = 1 + getTreeDepth(subTree[subKeys[0]])
var rightDepth = 1 + getTreeDepth(subTree[subKeys[1]])
return leftDepth > rightDepth ? leftDepth : rightDepth
}
return 0
}
getTreeDepth(tree)
'''
绘制决策树
'''
import matplotlib.pyplot as plt
# 获取树的深度
def getTreeDepth(tree):
if tree == None or (not isinstance(tree, dict)) or len(tree.keys()) == 0:
return 0
subTreeKey = list(tree)[0]
subTree = tree[subTreeKey]
subTreeKeys = subTree.keys()
maxSubTreeDepth = 0
for subKey in subTreeKeys:
depth = getTreeDepth(subTree[subKey])
if depth >= maxSubTreeDepth:
maxSubTreeDepth = depth
return 1 + maxSubTreeDepth
# 获取树的最大宽度,即叶子节点个数。
def getTreeWidth(tree):
if tree == None:
return 0
if isinstance(tree, str):
return 1
keys = list(tree.keys())
subTree = tree[keys[0]]
subTreeKeys = list(subTree)
numLeaves = 0
for subKey in subTreeKeys:
numLeaves += getTreeWidth(subTree[subKey])
return numLeaves
# 判断是否是叶子节点
def isLeaf(node):
return isinstance(node, dict) and len(node.keys()) == 1 and isinstance(node[list(node)[0]], str)
# 获取树的根节点位置
def getRootPos(tree, xStartPos = 0):
width = getTreeWidth(tree)
height = getTreeDepth(tree)
return (width - 1) * 4 + xStartPos, height * 2
# 绘制树的节点
def plotTreeNodes(tree, xStartPos = 0):
if isLeaf(tree):
print(xStartPos + 2, 2)
return
xPos, yPos = getRootPos(tree)
keys = list(tree.keys())
rootTree = tree[keys[0]]
subKeys = list(rootTree)
xStartPos = 0
for subKey in subKeys:
print ('subTree:', rootTree, subKey)
subTree = rootTree[subKey]
plotTreeNodes(subTree, xStartPos)
xStartPos, y = getRootPos(subTree)
print (xPos, yPos)
tree1 = {'no surfacing': {0: 'no', 1: {'flippers': {0: {'flippers': {0: 'no', 1: 'yes'}}, 1: 'yes'}}}}
tree2 = {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
tree3 = {'no surfacing': {0: 'no', 1: 'no', 2: 'yes'}}
print(getTreeDepth(tree1), getTreeDepth(tree2), getTreeDepth(tree3))
print(getTreeWidth(tree1), getTreeWidth(tree2), getTreeWidth(tree3))
print(isLeaf({0: 'yes'}), isLeaf(tree3))
print(getRootPos(tree1), getRootPos(tree2), getRootPos(tree3))
print ('Plot tree')
plotTreeNodes(tree1)
3 2 1
4 3 3
True False
(12, 6) (8, 4) (8, 2)
Plot tree
subTree: {0: 'no', 1: {'flippers': {0: {'flippers': {0: 'no', 1: 'yes'}}, 1: 'yes'}}} 0
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-3-c7f556c6fbba> in <module>()
7 print(getRootPos(tree1), getRootPos(tree2), getRootPos(tree3))
8 print ('Plot tree')
----> 9 plotTreeNodes(tree1)
<ipython-input-2-ae66559e1319> in plotTreeNodes(tree, xStartPos)
55 print ('subTree:', rootTree, subKey)
56 subTree = rootTree[subKey]
---> 57 plotTreeNodes(subTree, xStartPos)
58 xStartPos, y = getRootPos(subTree)
59 print (xPos, yPos)
<ipython-input-2-ae66559e1319> in plotTreeNodes(tree, xStartPos)
48 return
49 xPos, yPos = getRootPos(tree)
---> 50 keys = list(tree.keys())
51 rootTree = tree[keys[0]]
52 subKeys = list(rootTree)
AttributeError: 'str' object has no attribute 'keys'